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Chaos thresholds in finite Fermi systems

P. G. Silvestrov
Budker Institute of Nuclear Physics, 630090 Novosibirsk, Russia

~Received 26 May 1998!

The development of quantum chaos in finite interacting Fermi systems is considered. At sufficiently high
excitation energy the direct two-particle interaction may mix into an eigenstate the exponentially large number
of simple Slater determinant states. Nevertheless, the transition from Poisson to Wigner-Dyson statistics of
energy levels is governed by the effective high-order interaction between states very distant in the Fock space.
The concrete form of the transition depends on the way one chooses to work out the problem of factorial
divergence of the number of Feynman diagrams. In the proposed scheme the change of statistics has a form of
narrow phase transition and may happen even below the direct interaction threshold.
@S1063-651X~98!13610-3#

PACS number~s!: 05.45.1b, 73.23.2b, 71.70.2d
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I. INTRODUCTION

The investigation of chaotic properties of finite interacti
quantum systems has now a few decades history@1–7#. The
random matrix theory, originally introduced for modelin
this problem, adequately describes the statistics of com
cated high-energy excitations~see Ref.@8# for an extensive
review!. However, the concrete mechanism of develop
the chaotic behavior in the finite Fermi system with incre
ing excitation energy still requires further understandin
The interest in this problem has even increased in rec
years in particular due to the recent explosion of activity
the field of mesoscopic physics~quantum dots, atomic clus
ters, helium droplets, etc.!. The experimental observation o
electronic excitations in quantum dots@9# has stimulated
progress@10–14# in the theoretical investigation of chaot
disintegration of single-electron excitations in this system
The single-particle excitations, being most easily produ
experimentally, constitute an important part of the Hilb
space of the complicated system. However, the numbe
such states is exponentially small compared to the total n
ber of excited states. The onset of chaos in the majority
many-particle states is the subject of this paper.

We will consider finite but sufficiently large Fermi sys
tems. The particles are supposed to occupy almost all o
als below the Fermi energy«F of the mean field single-
particle Hamiltonian@15#. The averaged single-particle lev
spacing isD!«F . We will denote as simple states the sing
Slater determinant states having definite occupation num
~0 or 1! of all orbitals. The simple states are mixed by t
two-particle interaction and the matrix elementsV are sup-
posed to be small and Gaussian random

V2̄5D2/g2, g@1. ~1!

Hereg may be interpreted as dimensionless conductanc
the case of a quantum dot@11,12#. This simple model was in
fact introduced long ago in Refs.@2,3#.

Due to the weak interaction~1!, the low-energy excited
states are almost unperturbed. With the increase of enerE
the density of states grows rapidly and the exact wave fu
tions atE@D are formed by many chaotically mixed simp
PRE 581063-651X/98/58~5!/5629~8!/$15.00
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states. However, this chaotization of excited states proce
in a very nonuniform and complicated way. For illustratio
we have shown in Fig. 1 different energy scales relevan
this problem.

The complexity of the excited state is usually charact
ized by the inverse participation ratio~IPR! I 5(kuc i(k)u4,
wherec i(k) is the amplitude of thekth simple excitation in
the i th exact wave function. PhysicallyI is the effective in-
verse number of simple states mixed into the exact one.

While the density of single-particle statesn151/D does
not depend on energy, the total density grows extremely
with E beingn total;D21exp(2pAE/6D) @16#. We use large
E for the total energy of the many-particle configuration a
small « for the energy of single-particle orbitals. Due to th
huge number of states~the analog of the microcanonical en
semble in thermodynamics! the averaged occupation numb
for a given orbital for an arbitrarily chosen ‘‘typical’’ simple
state is given by the usual Fermi-Dirac distribution

f ~«2«F!5n~«!5S expF«2«F

T G11D 21

, ~2!

FIG. 1. Different energy scales corresponding to chaotization
single- or many-particle excited states.
5629 © 1998 The American Physical Society
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5630 PRE 58P. G. SILVESTROV
whereT5A6ED/p @17#. Note that we still have not take
into account the interactionV, but only explore the wide
statistics of single-Slater-determinant states.

The low-energy thresholds in Fig. 1 correspond to
decay of single quasiparticles. Quasiparticles in a quan
dot may be seen as peaks broadened by the intera
~bunches ofd peaks! in the one-particle spectral density u
to the energy«;Dg @10#. Above «;DAg the broadening
arises due to a decay of the quasiparticle into two partic
and one hole and may be explained by the Fermi golden r
Below this energy the width predicted by golden rule tur
out to be smaller than three-particle level spacing. Howe
as it was shown recently@12# up to energy«;DAg/ ln g, the
quasiparticle disintegration still proceeds through the eff
tive interaction with the many excited particle and ho
states. A nonuniform distribution of the matrix elements
the effective interaction in this case leads to a very unus
distribution of spacings between the peaks and widths of
bunches@14#.

The original intention of this research was to apply t
methods developed for the description of quasiparticle di
tegration for the investigation of the full spectrum of a co
plicated system. However, the onset of chaos in the ma
particle excitations provided us with a number of surpris
effects not present in the single-quasiparticle case. Only
estimate of the effective high-order matrix element in Sec.
may be considered as a straightforward generalization of
analogous estimate in Ref.@14#. In Sec. II we will show how
the direct interaction between particles may mix into o
wave function an exponentially large number of simp
states even inside the region of the Poissonian spectrum
Sec. III we consider the self-consistent scheme of the o
of chaos based on the analysis of the scaling behavior o
direct and effective interaction. However, in Sec. IV we pr
pose an another scenario of the Wigner-Dyson transi
caused by the factorial divergence of the high-order inter
tion. The detailed comparison of the features of these
scenarios is given in Sec. V.

II. MIXING BY THE DIRECT INTERACTION

For a weak interaction the strong mixing of differe
quantum states may take place only if their energies oc
sionally turn out to be very close. Therefore, consider fi
only two statesu i & and u f & with an energy difference« con-
nected by the matrix elementV. The simple calculation@18#
gives the IPR for the exact wave functionau i &1bu f &,

I 5a41b4512
2V2

«214V2
. ~3!

Let us fix the stateu i & and consider a set of statesu f & with a
densitydn/d«5D f

21 . It is convenient to introduce the inter
mediate scale«0 : uVu!«0!D f . With the probability 1
22«0 /D f there are no final states falling into the str
2«0,«,«0 and I 51 up to a negligible correction
;V2/D f«0 . With the small probability 2«0 /D f one of the
statesu f & enters the strip. In order to findI in this case one
has to average Eq.~3! over the interval of energy
e
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2«0

«0 S 12
2V2

«214V2D d«

2«0
512

2puVu
2«0

~4!

and then average theuVu over the ensemble of matrix ele
ments. Combining the two contributions one finds

I 512
2«0

D f
1

2«0

D f
S 12

2puVu
2«0

D 5122p
uVu
D f

. ~5!

This simple formula is basic for our perturbative estimat
The averaging of the modulus ofV for strongly non-
Gaussian high-order effective matrix elements will be t
main subject of Sec. III.

The goal of this paper is to consider the mixing of com
plicated excited states. Occupation numbers for these s
are described by Eq.~2!. The density of directly accessibl
states or the density of pairs of occupied 1,2 and unoccup
3,4 states with«11«25«31«4 , which may be connected
directly by the interaction, is

1

D2
5

1

~2! !2E dS ( xi D)
i 51

4

f i

dxi

D
5

T3

D4

p2

6
. ~6!

Here f i5 f (xi) ~2!, x1,25«1,22«F , x3,45«F2«3,4, and we
have used that 12 f (x)5 f (2x). The factor(2!)22 accounts
for the identical initial and final particles. It is easy now
use Eq.~5! to find the IPR. However, this result may be ev
further improved. Equation~5! with D f5D2 describes the
situation when only for one 232 transition 1,2→3,4 the
energy difference turns out to be of the same order of m
nitude as the matrix element. In the second order inV the
leading contribution toI is given by a double event 1,2
→3,4 and 5,6→7,8. However, as long as none of the orbita
528 coincides with any of 124 these two corrections ar
completely independent and corresponding contributionsI
should be simply multiplied. Effectively, all one-particl
states are chosen from;T/D orbitals around«F . Therefore,
if the number of couples of pairs falling into the energ
interval ;uVu is small compared to;T/D one may neglect
the interference between different direct transitions. Aga
we may introduce the intermediate scale«0 : uVu!«0 . The
number of directly accessible final states is 2«0 /D2@1, but
until «0 /D2!T/D the IPR is found simply as a product ove
these channels

I 5S 122p
uVu
2«0

D 2«0 /D2

5expH 22p
uVu
D2

J
5expH 2

4A3

Apg
S ED D 3/2J . ~7!

Here we have averageduVu for the Gaussian random inter
action ~1!. This result is valid for D/g!D2T/D or T
!DAg. The exponentiation of the IPR is a direct cons
quence of the two-particle character of the interaction.
would be very inconvenient to investigate such effects if o
considers the Hamiltonian of the system as a rand
~sparsed! matrix in the full Hilbert space. Surprisingly, to th
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PRE 58 5631CHAOS THRESHOLDS IN FINITE FERMI SYSTEMS
best of my knowledge, the simple effect~7! has not been
considered yet, e.g., for the description of the excitations
complex nuclei.

Due to Eq.~7!, at E.Dg2/3 the number of components i
a typical wave function becomes exponentially large. Ho
ever, within the range of validity of Eq.~7! only a small~also
exponentially! part of close energy levels is mixed in an
exact eigenstate. Therefore, this simple effect is not eno
for the creation of full quantum chaos.

III. HIGH-ORDER EFFECTIVE INTERACTION

Corrections to Eq.~7! arise after taking into account th
high-order effective interaction between three-particle sta
and then four-particle states, etc. The example of the co
sponding tree-type Feynman diagram is shown in Fig. 2.
tree-type diagrams are maximally enhanced due to a w
statistics of initial and final orbitals. Contributions from th
diagrams with closed loops are small, such as some powe
D/T. The generalization of Eq.~6! for the case of then-
particle interaction gives

1

Dn
5E dS ( xi D

~n! !2 )
i<2n

f i

dxi

D
5

~2pT!2n21

pn~2n!!D2n
. ~8!

Again (n!) 22 accounts for the identical fermions. Note th
(2n)!;22n(n!) 2 and therefore the integration over the en
giesxi does not lead here to anyn! suppression. This is in
strict contrast with what happens for the decay of quasip
ticles@14#, where the main suppression of the density of fin
statesnn arose due to the integration over the energies
final particles.

The calculation of the averaged modulus of the effect
matrix element entering both Eqs.~5! and~7! turns out to be
sufficiently more complicated. The simplest variant of t
effective interaction is given by the three-particle interact
arising in the second order of perturbation theory

Ve f f
~3!5(

2

V12V23

«12«2
. ~9!

Formally this interaction mixes together three statesu1&, u2&,
and u3&. The use of the concept of an effective interacti
requires that the admixture of the intermediate stateu2& in
the total wave function is small compared to those ofu1& and
u3&. This means thatV12,V23!u«12«2u'u«22«3u. The

FIG. 2. Tree-type diagram contributing to the high-order effe
tive matrix element. The screened Coulomb interaction is shown
dashed lines.
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contribution to the averaged IPR from strongly mixed~al-
most degenerate! u1&, u2&, and u3& should be considered
separately, but this correction is small, e.g., 1/lng, compared
to the total contribution of the effective interaction. On th
other hand, we will be interested in the tail of the distributi
of the effective matrix elements. For Gaussian distributedV
@Eq. ~1!# the probability to find a large individual matrix
element of the original two-particle interaction is expone
tially small. The large matrix elements appear if one term
the sum in Eq.~9! occasionally has an anomalously sm
denominatoru«12«2u!D. All the other ~random! contribu-
tions in the sum in this case may be neglected for lng@1.
The result of this lengthy discussion may be summarized
the formula for the probability distribution for the effectiv
matrix element~9!

P~3!~V!;
D

g2

1

V2
, g22,uVu/D,g21. ~10!

The averaged modulus of the matrix element in this cas
uVe f f

(3)u;D ln g/g2.
Higher-order effective matrix elements are obtained

simply adding more intermediate states to Eq.~9!. Extensive
discussions of the problems arising while calculating the
eraged value of this matrix element may be found in R
@14#. For example, the averaged modulus of the four-part
effective matrix element for a given Feynman diagram
given by

uVe f f
~4! u5U(

2,3

V12V23V34

«2«3
U5~A2D!3

~Apg!3E 1

u«2«3u
d«2

2D

d«3

2D
.

~11!

Here, compared to Eq.~9!, we have made the change o
variables«12«2→«2 and«12«3→«3 . The preintegral fac-
tor ;(D/g)3 in Eq. ~11! arose after averaging the Gaussi
distributed@Eq. ~1!# direct matrix elementsuVi j u. The upper
bound for both remaining integrals in Eq.~11! is given by
the single-particle level spacingu«2,3u,D. Due to the loga-
rithmic character of the integrals, the order of magnitu
estimate of the bounds is enough. More interesting is
origin of the bounds at small«2,3. Analogously to what we
have discussed for the three-particle interaction, the form
~11! describes the mixing of four statesu1&, u2&, u3&, andu4&
in the third order of perturbation theory. The interaction
the four states may be replaced by the effective interactio
only two statesu1& and u4& if the admixture of intermediate
statesu2& and u3& is small. This requirement, for example
for stateu2& means thatu«2u@uV12u;D/g ~weak mixing of
u2& and u1&) and u«2u@uV23V34/«3u;(D/g)2/u«3u ~weak
mixing of u2& and u4&). Another two inequalities for the
vectoru3& areu«3u@D/g andu«3u@(D/g)2/u«2u. Combining
all these inequalities, one finds for the range of integration
Eq. ~11!

D/g!u«2,3u!D. ~12!

These bounds allow one to find the averaged matrix elem
with ;1/lng accuracy:uVe f f

(4)u;D(ln g)2/g3. In a similar way
one may consider the five-particle, six-particle, etc., effect
interaction. Unfortunately, the system of inequalities desc

-
y
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ing the range of integration for the intermediate energ
turns out to be sufficiently more complicated in these cas

Formulas such as Eq.~11! may be used to find again th
distribution of the effective matrix elements. In particular f
the four-particle interaction

uVe f f
~4! u5E P~4!~Ve f f

~4! !dVe f f
~4! ,

P~4!~Ve f f
~4! !5

~A2D!3

~Apg!3E dS Ve f f
~4!2

~A2D!3

~Apg!3

1

«2«3
D d«2d«3

4u«2«3uD2
.

~13!

Here the range of variation of«2 and«3 is the same as in Eq
~11!. Found in this way, the probability distribution in th
general case has the form

P~n!~V!;
D

gn21

1

V2
x~n!, g2n11,uVu/D,g21, ~14!

wherex (n)(V) is a piecewise polynomial function of the o
der n23 of two logarithms ln(uVu/D) and lng. Again, in the
simplest nontrivial example ofn54 one finds

x~4!5H ln~ uVug3/D!, g23,uVu/D,g22

2 ln~ uVug/D!, g22,uVu/D,g21.
~15!

Also notice the huge range of variation ofVe f f
(n) @Eq. ~14!# for

largen. Averaging the matrix element over the distributio
~14! leads to

uVe f f
~n! u;D~ ln g!n21/gn. ~16!

Due to a complicated domain of integration over the int
mediate energies it is difficult even to estimate the value
the overall numerical constant here. However, the impor
result of Ref.@14# is that at largen this unknown overall
constant is neither large liken! nor small like 1/n!. The
appearance of logarithms in the coefficients of the wa
function was also observed in@19#.

As in Eq. ~7!, the corrections generated by the man
particle effective interaction are naturally exponentiated
least for n!T/D. Thus combiningDn @Eq. ~8!# with Ve f f

(n)

@Eq. ~16!#, we obtain instead of~7!

I 5expH 2
4A3

Apg
S ED D 3/2

FS ln g

g

E
D D J ,

F~x!511( Fnxn. ~17!

In the case of the short-range screened two-particle inte
tion V(rW1 ,rW2);d(rW12rW2) the first coefficient here isF1

524A2/p/5. This result forI may be compared with the
perturbative result for the IPR for disintegration of the sing
quasiparticle in the isolated quantum dot found in Refs.@12–
14#:

I q512
1

ln g
f~y!, f5 (

n51

`

fnyn, ~18!
s
s.

-
f

nt

e

-
t

c-

wherey5(«/D)2ln g/g and« is the energy of the quasipar
ticle. In analogy with the usual IPR, theI q is a sum of fourth
powers of the amplitudes to find a givenkth quasi-particle in
the i th exact stateI q5( i uc i(k)u4. Section IV will be de-
voted to the more detailed investigation of the possible pr
erties of the scaling functionF(x). For a single quasiparticle
the coefficientsfn decrease liken! 21 for large n, which
makes very improbable the disintegration of a quasipart
through the delocalization transition in the Fock space.

The simple counting of the powers ofE/D and g in Eq.
~17! leads to the following scenario of the development
chaos.

~a! For Dg2/3,E,Dg/ ln g Eq. ~7! is valid. The number of
components in a typical wave function is exponentially larg
but described by simple multiplication of independent dire
transitions.

~b! At E;Dg/ ln g all terms in the series~17! enter the
picture. The wave function is formed by a fractal combin
tion of states distant in the Fock space@20#. If the resumed
scaling functionF is a regular function of the argumentx „as
it is for f(y) @Eq. ~18!#…, the number of components of th
wave function will be small compared to the total density
states and the level statistics will be close to Poissonian

~c! Starting fromE;Dg, all quasiparticles constituting
the wave function have enough energy to decay via the u
golden rule. Only here is the Wigner-Dyson statistics e
dent. The more formal criteria for onset of chaos will be t
requirement that the productIEn total become of the order o
;1, wheren total is the total density of states described abo
Eq. ~2!. This condition is equivalent to the equation for u
known functionF(x),

xF~x!5
pAp

6A2
ln g. ~19!

The solution of this equation gives the energy of the tran
tion to a rigid spectrum somewhere withing/ ln g,E/D,g.
Due to the exponential character ofI andn total most likely
this will be the narrow phase transition.

IV. THE N! SCENARIO

Thus the power counting for the perturbative IPR~17!
may provide us with the formally self-consistent scenario
chaos developing in finite Fermi systems. Now we are go
to show how taking into account of the high-order behav
of the coefficientsFn may lead to the important revision o
this straightforward scheme. Unfortunately, we are not a
to perform the complete estimation of the asymptotics ofFn .
Nevertheless, the catastrophic change of the mechanism
the onset of chaos, which we will consider, may partly co
pensate for the lack of rigor. Therefore, even though ba
on certain assumptions, the result of this section should
considered as one of the main results of the paper.

The calculation of any term of the series in Eq.~17! con-
sists of two main steps. First is the calculation of the dens
of final states, which we were able to perform explicitly@Eq.
~8!#. The second step is the estimation of the effective ma
element. The matrix element for a given Feynman diagram
described by Eq.~16!. As we have said, this matrix elemen
could not contain anyn! or n! 21. However, for the many-
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body problem and high order of perturbation theory the sa
initial and final configurations may be connected by ma
different Feynman diagrams. We have shown in Fig. 2
example of the corresponding tree-typen-particle diagram.
The total number of diagramsNd, like in Fig. 2, is

Nd5nn22~n21!!n!. ~20!

Heren! is the number of permutations of 182n8 final par-
ticles, (n21)! is the number of replacements of~screened!
Coulomb interaction lines, andnn22 is the number of (n
21)-segment trees connectingn points 12n @21#. Equation
~20! gives us the number of diagrams of the Schro¨dinger
perturbation theory. Among theNd trees there are many dia
grams having the same set~up to permutations! of matrix
elements of the two-particle interactionVi j and different en-
ergy denominators. As it was pointed out in Ref.@14#, these
diagrams could not be considered as statistically indep
dent, which results in lowering of the mixing by the hig
order effective interaction. The averaged modulus of the
fective matrix element found for the single Feynm
diagram~16! should be modified in the case of many inte
fering diagrams. However, due to a huge range of varia
of the Ve f f in the power law distribution~14!, the average
value is saturated by a rare very large fluctuation of the m
trix element. Therefore, forn not too large the generalizatio
of Eq. ~16! for the many-diagram case is achieved by t
simple multiplication by the number of diagrams~we will
return later to the discussion of very largen). Finally, com-
bining Eqs.~8!, ~16!, and~20!, we find

Fn<n!. ~21!

We see that the series in Eq.~17! most likely is the
asymptotic series. Due to the unsatisfactory estimate of
number of diagrams and even the value of the individ
diagram, we were able to draw only the upper bound forFn .
However, it seems very unlikely that the cancellation b
tween the diagrams of the Schro¨dinger perturbation theory
will remove the factorial divergence of the coefficients of t
series. In the following~unless explicitly indicated other
wise! we suppose thatFn;n!. The asymptotic series, com
mon in field theory and high energy physics, usually do
cause serious troubles~for a review see Ref.@22#!. In all
known cases one simply breaks the summation on the sm
est term of the series and uses this smallest term also a
order of magnitude estimate of the rest of the nonpertur
tive part of the sum. The more refined strategy will be
perform the Borel summation, but this procedure~up to the
same nonperturbative corrections! is equivalent to the break
ing of the series at the smallest term. In our example
means that one should break the summation in Eq.~17! at
n0;gD/ ln gE and the nonperturbative ambiguity inF should
be

dFnp;e2n0;expH 2s
g

ln g

D

E J , ~22!

with somes;1. However, in the known field-theoretic ex
amples there exist clear physical mechanisms~instanton and
renormalon! that allow us to understand the origin of no
perturbative corrections and the necessity of breaking
e
y
e

n-

f-

n

-

e
l

-

t

ll-
the
a-

is

e

series at the smallest term. In our many-body quantum pr
lem we could findno physical motivation for the appearanc
of nonperturbative corrections of the kind (22)andwe see no
reasons for breaking the summation in Eq. (17) at the sm
est term. Of course, Eq.~17! is not exact, but corrections to
F(x) are small, e.g., (lng)21 or D/E. Taking into account
such corrections will help us sum up the original diverge
series. Nevertheless, in order to make sense of our pertu
tive analysis of the onset of chaos in finite Fermi systems
should find the physically motivated cutoff for then! diver-
gent sum. The natural cutoff forFn , which we see, is given
by the total number of particles that may enter the diagram
the effective interactionnmax;T/D;AE/D. If nmax.x21

the summation now goes above the smallest term of the
ries. The consequences of the decision to sum up the s
above the smallest term are crucial. In the standard sch
the function F(x) is described by perturbation theory
smallx and becomes completely nonperturbative~although it
still may be smooth and finite! at x;1. Within the new sce-
nario F(x) blows up at

Fnmax
xnmax;~nmaxln gE/gD!nmax;1, ~23!

which gives the chaotization thresholdEc;D(g/ ln g)2/3. This
estimate was done for the most strongly divergent series
lowed by Eq. ~21!. For example, ifFn;(n/2)! the same
calculation will lead toEc;D(g/ ln g)4/5. Therefore, the more
accurate conclusion from Eq.~21! is that due to the effective
interaction including all;T/D excited particles, the serie
for the IPR ~7! blows up at some (g/ ln g)2/3,Ec,g/ ln g
@23#.

Two important peculiarities of the emergence of quant
chaos follow from this ‘‘factorial’’ scenario.

~i! The direct interaction connects only the states close
the Fock space@20#. Therefore, Eq.~7! describes mixing of
only a small part of close levels. On the other hand,
highest-order effective interaction entering Eq.~23! mixes
the huge number~the majority of all many-particle excita
tions! of very distant simple states. Thus divergence ofF(x)
due ton! leads to the transition from the Poisson to the rig
~Wigner-Dyson! spectrum atE5Ec .

~ii ! Due to the large power ofx in Eq. ~23!, the growth of
F(x) with the increase of energy takes place at a very nar
interval DE/Ec;1/nmax. This means that the change of st
tistics has a form of phase transition with relative wid
;1/nmax.

Our description of the development of chaos is su
ciently based on the estimate ofnmax @Eq. ~23!#. If one is
able to find another reason for breaking the series at a t
parametrically smaller thannmax;T/D the result forEc also
will be different. For example, the new cutoff may arise d
to a huge number of interfering diagrams~20!. The joint
probability distribution for the sum of many diagrams wi
power-law individual distributions described by Eq.~14! has
a Lorentzian form@24# with the widthg having the form

P~V!;
g

V21g2

x~V!

x~g!
, g;x~g!

DNd

gn21
;D

n3n

gn
. ~24!

Here we have used for the estimate of the number of in
pendent diagrams the upper bound~20!. This distribution is
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valid for uVu,D/g. The functionx was defined in Eq.~14!.
The factorx(V)/x(g) allows us to preserve the asymptoti
~14! at uVu@g. Due to the logarithmic character ofx, this
factor correctly accounts for the deviation from the pu
power law in the distribution of single matrix elements. W
see that after taking into account the interference of differ
diagrams, the power-law distribution of the total matrix e
ment becomes strongly violated atuVu;g, not at uVu
;Dg2n11 as in Eq.~14!. The value ofFn found with the
distribution P(V) @Eq. ~24!# becomes parametrically differ
ent from the estimate~21! only at nmax8 ;g1/3 @even atnmax8
;(g/ ln g)1/3 if one considers seriously the high powers
logarithms in Eq.~24!#. However, this new variant of the
cutoff leads to the same threshold for the onset of chao
we have found before in Eq.~23!. This coincidence of the
results of two different approaches to the estimation ofnmax
may be considered as indirect support for the transition
Wigner-Dyson statistics atEc;D(g/ ln g)2/3.

At least some of the thresholds shown in Fig. 1 may
aboveEc . The physical meaning of these perturbative thre
olds becomes less clear. Nevertheless, even aboveEc one
may try to look for effects generated by the direct or lo
order effective interaction. The highest-order effective int
action becomes important due to the huge combinato
~20!, but the corresponding matrix element is in general v
small ~up to V;D/gnmax). Thus this high-order interaction
may be invisible~or at least suppressed! at small times in
time-dependent problems. For example, one may cons
the time evolution of the wave packetC(t), starting att
50 from a single Slater determinant. The pure direct int
action in this case gives

z^C~0!uC~ t !& z25e2Gt, G52A6Dg22~E/D!3/2. ~25!

The formal power counting@like we have done below Eq
~17!# gives for the range of validity of this resultDg2/3!E
!Dg/ ln g. However, due to the logarithmic behavior of a
integrals @see, e.g., Eq.~11!# all values of the high-orde
effective matrix elements are equally important with
g2n11,uVu/D,g21 @Eq. ~14!#. Therefore, the range of va
lidity of Eq. ~25! may change greatly after taking into a
count the contribution from large high-order effective mat
elements.

V. DISCUSSION

The goal of this paper was to consider how the chao
mixing of noninteracting eigenstates develops with incre
ing the excitation energy in finite weakly interacting Fer
systems. Measured in units of the single-particle level sp
ing D the energy corresponding to the onset of rigid sp
trum may depend on only one parameterg @Eq. ~1!#. Never-
theless, even with only one parameter we were able
introduce a number of different energy scales, shown in F
1, which correspond to~or may correspond to! the different
stages of development of chaos.

The low lying thresholds in the figure«/D;(g/ ln g)1/2

and«/D;g1/2 are associated with the decay of a single q
siparticle. These thresholds were considered in Refs.@10–14#
and their description was not the aim of this paper. Howev
the methods introduced in Refs.@12,14# for the investigation
nt
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er
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c
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i
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to
.

-

r,

of below golden rule decay provides us with a useful tool
the investigation of the onset of chaos in complex ma
particle excitations also.

Technically, our consideration is based on the two sim
equations~5! and ~7! for the IPR. The two noninteracting
states are strongly mixed by the interaction if the correspo
ing energy difference turns out to be of the same order
magnitude as the matrix element. As a result, all the effe
that we consider are determined by the product of the a
aged modulus of the matrix element and the density of
cessible states.

The emergence of chaos in the majority of complica
states with many excited particles and holes was the m
subject of this paper. This increase of chaos with the gro
of excitation energy proceeds in a very complicated w
both technically and especially logically. In the simple
variant, mixing of the simple~single Slater determinant!
states is caused by the direct interaction. The mixing by
rect interaction starts atE.Dg2/3 @25#. Due to the large num-
ber of excited particles, the interaction may proceed throu
a large number of independent channels. This results in
exponentiation of the IPR, as we have shown at the end
Sec. II. Thus, even the direct interaction may mix together
exponentially large number of Slater determinant configu
tions. However, this number is still small compared to t
total number of levels of the complicated system and
direct interaction could not cause the transition from Pois
to Wigner-Dyson statistics of energy levels.

An alternative to the direct interaction is the transition v
effective three-particle, four-particle, etc., interactions co
sidered in Sec. III. The effect of this high-order interaction
much weaker than that of the direct interaction at low en
gies, but they became comparable atE;Dg/ ln g. Above the
energyE;Dg/ ln g our perturbative approach is no long
valid and we were forced to introduce the unknown scal
function F(ln gE/gD) into the exponent describing the IP
in Eq. ~17!. However, if one expects thatF(x;1);1, the
logarithm of the number of components in the typical wa
function atE;Dg/ ln g will be ln g@1 times smaller than the
logarithm of the total number of states. This means that e
though the mechanism of mixing changes and the numbe
components in the wave function increases much faste
E;Dg/ ln g, this threshold does not correspond to t
Poisson-Wigner-Dyson transition.

The Wigner-Dyson statistics become evident only atE
;Dg. This energy is analogous to the golden rule thresh
«;Dg1/2 for the decay of a single quasiparticle. Rough
speaking, above theE;Dg any particle from the strip;T
around«F may decay via the golden rule.

Formally, in order to understand how the change of s
tistics proceeds betweenE;Dg/ ln g andE;Dg one should
analyze the high-order behavior of the coefficientsFn in the
expansion of the functionF(x) @Eq. ~17!#. Surprisingly, this
analysis in Sec. IV instead of such an understanding led u
the crucial revision of the straightforward scheme conside
above.

As we have shown in Sec. IV, the series in Eq.~17! most
likely is the asymptotic series. AlthoughFn;n! @Eq. ~21!# is
only the upper bound forFn , it seems very unlikely that the
factorial divergence of the coefficients will be eliminate
Moreover, even ifFn;(nn)! with any 0,n,1, the results
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of Sec. IV will be only slightly modified. The factorial di
vergence of the series would not be dangerous if one sum
up, e.g., via some variant of the Borel method. Howev
within the Borel prescription one is immediately faced w
the problem of strange nonperturbative corrections like
Eq. ~22! ~moreover, that theFn are positive by construction
and the series is non-Borel summable!. Being unable to find
the physical motivation for the Borel summation, we we
looking for another way to make sense of the divergent
ries. The coefficient Fn is given by the sum of
(n11)st-order tree-type Feynman diagrams. Therefore,
natural cutoff for the series is given by the order of the la
est diagram that may be constructed with available;T/D
particles, namely,nmax;T/D ~one more way to determin
nmax considered in Sec. IV leads to the same physical res!.
Within this scenario thenmax and the scaling parameterx
5 ln gE/gD in Eq. ~17! are two independent variables. Atx
.1/nmax the summation in Eq.~17! goes above the smalles
term. However, up to the energyEc;D(g/ ln g)2/3 all nmax
terms of the series are small. AtE5Ec even the broken serie
blows up and aboveEc our perturbative approach is n
longer valid. Because the growth ofF(x) at E'Ec proceeds
mostly due to the last terms of the series or the most c
plicated diagrams of the highest allowed order of pertur
tion theory, this threshold corresponds to the narrow ph
transition from the Poisson to the Wigner-Dyson spectru
We attempted at the end of Sec. IV to find remnants
nonchaotic behavior aboveEc by considering the short time
processes. However, this issue requires a separate and
careful investigation.

To summarize, we have considered in this paper the
scenarios how quantum chaos may develop in the fi
Fermi systems depending on the way one uses the sum
tion of factorially divergent contributions from the high
order effective interaction.

~i! If the series is summed up within the Borel prescr
tion ~i.e., broken effectively at the smallest term! we are able
to find a few distinct stages of chaotic behavior. Below t
energy;Dg2/3 the majority of eigenvectors are almost u
t.
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perturbed. Between;Dg2/3 and ;Dg/ ln g a direct interac-
tion mixes together the exponentially large number of sim
states~7!. However, the IPR is under theoretical control
this region and the statistics is clearly Poissonian. Abo
Dg/ ln g the statistics of the energy levels is still Poissonia
but the IPR is described by some~unknown! scaling function
F(x) @Eq. ~17!#. The transition to the Wigner-Dyson spe
trum takes place somewhere betweenE;Dg/ ln g and E
;Dg @see Eq.~19!#. The transition may be relatively narrow
DE/E;(ln g)21.

~ii ! In the second variant the cutoff of the series in E
~17! is determined by the number of particles in the larg
allowed Feynman diagram and is independent of the sca
variablex. In this case the transition to the Wigner-Dyso
spectrum takes place atEc;D(g/ ln g)2/3 and is narrow like
DE/E;D/T;(ln g/g)1/3.

To our current understanding, the second scenario is m
physically motivated. However, our argumentation in th
part is not completely rigorous and one still may find reaso
for summation of the tree diagrams in the manner of Bo
The important disadvantage~or perhaps advantage! of the
second scheme is that if it is correct, it will be probably
example of the phase transition caused by the factorial di
gence of the series. Finally, although both of our scena
make physical predictions, we were able to make only
order of magnitude estimates of the considered thresho
Therefore, any experimental confirmation~within the true
experiment or by numerical simulations! of the mechanisms
of the development of chaos considered in this paper is v
desirable.
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