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Chaos thresholds in finite Fermi systems
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The development of quantum chaos in finite interacting Fermi systems is considered. At sufficiently high
excitation energy the direct two-particle interaction may mix into an eigenstate the exponentially large number
of simple Slater determinant states. Nevertheless, the transition from Poisson to Wigner-Dyson statistics of
energy levels is governed by the effective high-order interaction between states very distant in the Fock space.
The concrete form of the transition depends on the way one chooses to work out the problem of factorial
divergence of the number of Feynman diagrams. In the proposed scheme the change of statistics has a form of
narrow phase transition and may happen even below the direct interaction threshold.
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[. INTRODUCTION states. However, this chaotization of excited states proceeds
in a very nonuniform and complicated way. For illustration

The investigation of chaotic properties of finite interactingWe have shown in Fig. 1 different energy scales relevant to

guantum systems has now a few decades higtbry]. The this problem
random matrix theory, originally introduced for modeling . . . i
this problem, adequately describes the statistics of compli- The complexity of the excited state is usually character

e o7 . ized by the inverse participation ratitPR) 1 =3,|¢;(k)|*,
cated high-energy excitatiorisee Ref[8] for an extensive where ¢, (k) is the amplitude of th&th simple excitation in

review). However, the concrete mechanism of developin : . . . o
the chaotic behavior in the finite Fermi system with increas?—the ith exact wave function. Physicallyis the effective in-

ing excitation energy still requires further understanding.vervsvehi'?;rtr;]t;e;g;ssi'tm%?;;atﬁes_ r;;?i?e'giztthe_eﬁzcgggi'
The interest in this problem has even increased in recent y ge-p &9=

years in particular due to the recent explosion of activity innc_)t depe’_‘d on energ)i,lthe total_densny grows extremely fast
the field of mesoscopic physi¢guantum dots, atomic clus- with £ being viora~ A~ "exp(2myE/6A) [16]' We_ use I_arge
ters, helium droplets, efc.The experimental observation of € for the total energy of th_e many-pz_':lrtlcle c_onflguratlon and
electronic excitations in quantum dof8] has stimulated small for the energy of single-particle or_b|tals. Du.e to the
progresg10-14 in the theoretical investigation of chaotic huge nu_mber of stateishg analog of the mmrocanomcal en-
disintegration of single-electron excitations in this systemsSemble in thermodynamig¢he averaged occupation number

The single-particle excitations, being most easily producedo! @ given orbital for an arbitrarily chosen *“typical” simple

experimentally, constitute an important part of the HilbertStete is given by the usual Fermi-Dirac distribution

space of the complicated system. However, the number of e—¢g -1

such states is exponentially small compared to the total num- f(e—ep)=n(e)= ( exp{ F , 2

ber of excited states. The onset of chaos in the majority of T

many-particle states is the subject of this paper. £
We will consider finite but sufficiently large Fermi sys-

tems. The patrticles are supposed to occupy almost all orbit- N

als below the Fermi energy: of the mean field single- &

particle Hamiltoniar{15]. The averaged single-particle level

spacing isA<er . We will denote as simple states the single

Slater determinant states having definite occupation numbers 4 A

(0 or 1) of all orbitals. The simple states are mixed by the

two-particle interaction and the matrix elemeMsare sup-

posed to be small and Gaussian random

+1

naive Wigner-Dyson

— Ag/Ing High order mixing

strong Direct mixing

—— A(g/In g)2/ s Wigner-Dyson
due to the n!

— Agl/ 2 Quasi-particles decay via
VZ=A%lg?, g>1. (2) T the Golden rule

B A(g/lng)l/ ?  below Golden rule

Here g may be interpreted as dimensionless conductance in decay

the case of a quantum didt1,12. This simple model was in

fact introduced long ago in Reff2,3]. ) )
Due to the weak interactiofl), the low-energy excited T € one-particle level spacing

states are almost unperturbed. With the increase of ertergy

the density of states grows rapidly and the exact wave func- FIG. 1. Different energy scales corresponding to chaotization of

tions at&>A are formed by many chaotically mixed simple single- or many-particle excited states.
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where T=J6£A/ 7 [17]. Note that we still have not taken c0 v2 |\ de 21|V
into account the interactiolW, but only explore the wide f 1-———— 2o 17 4
statistics of single-Slater-determinant states. ~®0 e”+4V?) 8o go

The low-energy thresholds in Fig. 1 correspond to the
decay of single quasiparticles. Quasiparticles in a quantur@nd then average th&/| over the ensemble of matrix ele-
dot may be seen as peaks broadened by the interactidRents. Combining the two contributions one finds
(bunches ofé peaks in the one-particle spectral density up o _
to the energys~Ag [10]. Above e~A \/g the broadening 28 280( 27T|V|) A\

arises due to a decay of the quasiparticle into two particles =1~ A_f+ Ar 1 _1_27TA_f' ®)

and one hole and may be explained by the Fermi golden rule.

Below this energy the width predicted by golden rule turnsthjs simple formula is basic for our perturbative estimates.
out to be smaller than three-particle level spacing. Howeverrhe averaging of the modulus of for strongly non-

as it was shown recentiyl 2] up to energye ~AJg/lng, the  Gaussian high-order effective matrix elements will be the
quasiparticle disintegration still proceeds through the effecmain subject of Sec. III.

tive interaction with the many excited particle and hole The goal of this paper is to consider the mixing of com-
states. A nonuniform distribution of the matrix elements ofpjicated excited states. Occupation numbers for these states
the effective interaction in this case leads to a very unusugre described by E2). The density of directly accessible
distribution of spacings between the peaks and widths of thgtates or the density of pairs of occupied 1,2 and unoccupied

bunched14]. _ 3,4 states withe;+&,=g5+¢4, which may be connected
The original intention of this research was to apply thedirectly by the interaction, is

methods developed for the description of quasiparticle disin-

280

tegration for the investigation of the full spectrum of a com- 1 1 R
plicated system. However, the onset of chaos in the many- — = f 5(2 Xi)H fir=— —. (6)
particle excitations provided us with a number of surprising Az (21)2 i1 A A% 6

effects not present in the single-quasiparticle case. Only the
estimate of the effective high-order matrix element in Sec. lliHere f;=1(x;) (2), X;,=€1,— €, X34—=&r—€34, and we
may be considered as a straightforward generalization of theave used that4 f(x) = f(—x). The factor(2!) ~2 accounts
analogous estimate in RéfL4]. In Sec. Il we will show how for the identical initial and final particles. It is easy now to
the direct interaction between particles may mix into oneuse Eq.(5) to find the IPR. However, this result may be even
wave function an exponentially large number of simplefurther improved. Equatiort5) with A;=A, describes the
states even inside the region of the Poissonian spectrum. kituation when only for one 22 transition 1,2+3,4 the
Sec. Il we consider the self-consistent scheme of the onse&nergy difference turns out to be of the same order of mag-
of chaos based on the analysis of the scaling behavior of theitude as the matrix element. In the second ordeY ithe
direct and effective interaction. However, in Sec. IV we pro-leading contribution tol is given by a double event 1,2
pose an another scenario of the Wigner-Dyson transition-3,4 and 5,6-7,8. However, as long as none of the orbitals
caused by the factorial divergence of the high-order interac5— 8 coincides with any of +4 these two corrections are
tion. The detailed comparison of the features of these tw@ompletely independent and corresponding contributions to
scenarios is given in Sec. V. should be simply multiplied. Effectively, all one-particle
states are chosen fromT/A orbitals around: . Therefore,
if the number of couples of pairs falling into the energy
interval ~|V/| is small compared te- T/A one may neglect
For a weak interaction the strong mixing of different the interference between different direct transitions. Again,
quantum states may take place only if their energies occa¥e may introduce the intermediate scalg |V|<eq. The
sionally turn out to be very close. Therefore, consider firsthiumber of directly accessible final states is2A,>1, but
only two statedi) and|f) with an energy difference con-  until e5/A,<T/A the IPR is found simply as a product over
nected by the matrix elemekt The simple calculatiofl8]  these channels

gives the IPR for the exact wave functiai)+ 8| f), s e
|V| 2eq/Ay |V|
I=|1-27m— =exp, — 27—

II. MIXING BY THE DIRECT INTERACTION

2V2 280 Az
|:a4+ﬁ4:1—m. 3 ) 4\/§( 5)3/2
=eX —\/_Tg Z . (7)

Let us fix the stat¢i) and consider a set of statdfy with a

densitydn/de=A;*. It is convenient to introduce the inter- Here we have averagdd| for the Gaussian random inter-
mediate scalesy: |V|<eo<A;. With the probability 1 action (1). This result is valid forA/g<A,T/A or T
—2eq/A¢ there are no final states falling into the strip <A./g. The exponentiation of the IPR is a direct conse-
—gg<e<egg and I=1 up to a negligible correction quence of the two-particle character of the interaction. It
~V?/Asey. With the small probability 2,/A¢ one of the  would be very inconvenient to investigate such effects if one
states|f) enters the strip. In order to findin this case one considers the Hamiltonian of the system as a random
has to average E@3) over the interval of energy (sparsegimatrix in the full Hilbert space. Surprisingly, to the
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1 1 contribution to the averaged IPR from strongly mixed-
most degenerate/1), |2), and |3) should be considered
separately, but this correction is small, e.g., #/lcompared
/ to the total contribution of the effective interaction. On the
3 other hand, we will be interested in the tail of the distribution
of the effective matrix elements. For Gaussian distribited
[Eq. (1)] the probability to find a large individual matrix
element of the original two-particle interaction is exponen-
/ tially small. The large matrix elements appear if one term in
n the sum in Eq.(9) occasionally has an anomalously small
FIG. 2. Tree-type diagram contributing to the high-order eﬁeC_Qenomlnatodsl—§2|<A. All the other (random contribu-
tive matrix element. The screened Coulomb interaction is shown by'9"NS 1N the sum in this case may be neglected ch;H,l' .
dashed lines. he result of this lengthy discussion may be summarized in
the formula for the probability distribution for the effective
best of my knowledge, the simple effe® has not been Mmatrix element(9)
considered yet, e.g., for the description of the excitations in A1
complex nuclei. By~ = -2 -1
Due to Eq.(7), at£>Ag?® the number of components in PTI(V) @ V2’ g 2<|V|/a<g L (10)
a typical wave function becomes exponentially large. How-
ever, within the range of validity of E¢7) only a small(also ~ The averaged modulus of the matrix element in this case is
exponentially part of close energy levels is mixed in any |V~ A Ing/g?
exact eigenstate. Therefore, this simple effect is not enough Higher-order effective matrix elements are obtained by

[\V]
[ 3]

n

for the creation of full quantum chaos. simply adding more intermediate states to E3). Extensive
discussions of the problems arising while calculating the av-
ll. HIGH-ORDER EFFECTIVE INTERACTION eraged value of this matrix element may be found in Ref.

[14]. For example, the averaged modulus of the four-particle
effective matrix element for a given Feynman diagram is
iven by

Corrections to Eq(7) arise after taking into account the
high-order effective interaction between three-particle state
and then four-particle states, etc. The example of the corre=
sponding tree-type Feynman diagram is shown in Fig. 2. The
tree-type diagrams are maximally enhanced due to a wide |v5;}>f|= = 3 — -
statistics of initial and final orbitals. Contributions from the (\Vmg) |e284] 24 24
diagrams with closed loops are small, such as some power of (11)
A/T. The generalization of Eq6) for the case of then-
particle interaction gives

dx (2#T)>"1

> X
i: J —I : S (8) bound for both remaining integrals in E@L1) is given by
Ay (nH2 i=2n A gn(2n)iA? the single-particle level spacing, 4 <A. Due to the loga-
rithmic character of the integrals, the order of magnitude
Again (n!) ~? accounts for the identical fermions. Note that estimate of the bounds is enough. More interesting is the
(2n)!~22"(n!)? and therefore the integration over the ener-origin of the bounds at smadl, 5. Analogously to what we
giesx; does not lead here to amy suppression. This is in  have discussed for the three-particle interaction, the formula
strict contrast with what happens for the decay of quasipar¢11) describes the mixing of four statgk), |2), |3), and|4)
ticles[14], where the main suppression of the density of finalin the third order of perturbation theory. The interaction of
statesv, arose due to the integration over the energies othe four states may be replaced by the effective interaction of
final particles. only two stateg1) and|4) if the admixture of intermediate
The calculation of the averaged modulus of the effectivestates|2> and|3) is small. This requirement, for example,
matrix element entering both Eq&) and(7) turns outto be  for state|2) means thate,|>|V]~A/g (weak mixing of
sufficiently more complicated. The simplest variant of the|2> and |1)) and |e,|>|VaVaales|~(AIg)%|es| (Weak
effective interaction is given by the three-particle interactionmixing of |2) and |4)). Another two inequalities for the
arising in the second order of perturbation theory vector|3) are|es|>A/g and|es|> (A/g)?|e,|. Combining
all these inequalities, one finds for the range of integration in
V=3 e

_ (9) Eq. (11)
2 €17 &2

(N2A)3 [ 1 de, des

2 V12V23V34
23 €283

Here, compared to Eq9), we have made the change of
variablese;—e,— ¢, ande;—e3—¢&3. The preintegral fac-
tor ~(A/g)® in Eq. (11) arose after averaging the Gaussian

) distributed[Eq. (1)] direct matrix element$V;;|. The upper

Alg<|ey 4 <A. (12
Formally this interaction mixes together three stades |2),
and|3). The use of the concept of an effective interactionThese bounds allow one to find the averaged matrix element
requires that the admixture of the intermediate sfajein ~ with ~1/Ing accuracy:|Vg‘Pf|~A(In 0)%g>. In a similar way
the total wave function is small compared to thos¢lofand  one may consider the five-particle, six-particle, etc., effective
|3). This means thatV,,,V,3<|e;—&,|~|e,—e3]. The interaction. Unfortunately, the system of inequalities describ-
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ing the range of integration for the intermediate energiesvherey=(e/A)?Ing/g ande is the energy of the quasipar-

turns out to be sufficiently more complicated in these casedicle. In analogy with the usual IPR, thg is a sum of fourth
Formulas such as Eq11) may be used to find again the powers of the amplitudes to find a givkth quasi-particle in

distribution of the effective matrix elements. In particular for the ith exact statd ;= 3| #i(k)|*. Section IV will be de-

the four-particle interaction voted to the more detailed investigation of the possible prop-
erties of the scaling functioR(x). For a single quasiparticle
W:J POVAEY IV the coefficiems(;bn decrease Ii.k(.en!‘l fo_r large n, wh_ich _
eff el Teft makes very improbable the disintegration of a quasiparticle
through the delocalization transition in the Fock space.
PV :(\/EA)3J (4)_(\/§A)3 1 | deydes The simple counting of the powers 6fA andg in Eq.
eff (\/;9)3 eff (\/;9)3 £,63 4|3233|A2' glhg)olsads to the following scenario of the development of
(13 :

(a) ForAg?P<£<Ag/Ing Eq.(7) is valid. The number of
Here the range of variation @f, ande; is the same as in Eq. components in a typical wave function is exponentially large,
(11). Found in this way, the probability distribution in the but described by simple multiplication of independent direct
general case has the form transitions.

(b) At £~Ag/Ing all terms in the serie§l7) enter the
picture. The wave function is formed by a fractal combina-
tion of states distant in the Fock spd@®]. If the resumed
scaling functionF is a regular function of the argumexfas
where y(™(V) is a piecewise polynomial function of the or- it is for ¢(y) [Eq. (18)]), the number of components of the
dern—23 of two logarithms In{/|[/A) and Ing. Again, in the ~ Wwave function will be small compared to the total density of

1
PM(V)~ WX(”), g "ti<|v|/aA<gY, (19

gnfl

simplest nontrivial example ai=4 one finds states and the level statistics will be close to Poissonian.
(c) Starting from&~Ag, all quasiparticles constituting
@ In([V|g®/a), g 3<|V|/A<g™? the wave function have enough energy to decay via the usual
XTZ) Sin(vigia), g 2<|Viia<g L (159  golden rule. Only here is the Wigner-Dyson statistics evi-

dent. The more formal criteria for onset of chaos will be the

largen. Averaging the matrix element over the distribution ~ 1, Wherevq, is the total density of states described above
(14) leads to Eg. (2). This condition is equivalent to the equation for un-

known functionF(x),

IVeTl~A(ng)" *g". (16)
mT
Due to a complicated domain of integration over the inter- xF(x)= 6y2 Ing. (19)

mediate energies it is difficult even to estimate the value of

the overall numeri(_:al constant here. However, the importanthe solution of this equation gives the energy of the transi-
result of Ref[14] is that at Iargen this unknown overall tion to a rigid spectrum somewhere withiiiln g<&/A<g.

constant is neither Iqrge ||kBI nor Sma”llke 1h!. The Due to the exponentia| character lo&nd Viotal most ||ke|y
appearance of |Ogar|thm3 in the coefficients of the wavehis will be the narrow phase transition.

function was also observed [i9].
As in Eq. (7), the corrections generated by the many-

. . . . . IV. THE N! SCENARIO
particle effective interaction are naturally exponentiated at

least forn<T/A. Thus combiningA, [Eq. (8)] with V{7, Thus the power counting for the perturbative IRRY)
[Eq. (16)], we obtain instead of7) may provide us with the formally self-consistent scenario of
chaos developing in finite Fermi systems. Now we are going
43 £\32 (In gé to show how taking into account of the high-order behavior
I =exp — _\/;g A 9 Al of the coefficients,, may lead to the important revision of

this straightforward scheme. Unfortunately, we are not able
to perform the complete estimation of the asymptotick pf
F(X)=1+Z Fox". (17 Nevertheless, the catastrophic change of the mechanism of
the onset of chaos, which we will consider, may partly com-
In the case of the short-range screened two-particle interadensate _for the Iacl_< of rigor. Therefore,. even Fhough based
. - - - _ - i on certain assumptions, the result of this section should be
tion V(ry,ry)~d(ry—rp) the first coefficient here i$1  cyngigered as one of the main results of the paper.
=24y2/w/5. This result forl may be compared with the  Tne calculation of any term of the series in E47) con-
perturbative result for the IPR for disintegration of the singlegists of two main steps. First is the calculation of the density

quasiparticle in the isolated quantum dot found in REf8— s final states, which we were able to perform explic[g.
14]: (8)]. The second step is the estimation of the effective matrix
1 o element. The matrix element for a given Feynman diagram is
| =1— — , _ n 18 described by Eq(16). As we have said, this matrix element
d Ing o). 4 nzl Py 18 could not contain any! or n! ~1. However, for the many-
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body problem and high order of perturbation theory the sameseries at the smallest term. In our many-body quantum prob-
initial and final configurations may be connected by manylem we could fincho physical motivation for the appearance
different Feynman diagrams. We have shown in Fig. 2 theof nonperturbative corrections of the kind (2&)dwe see no
example of the corresponding tree-typgoarticle diagram. reasons for breaking the summation in Eq. (17) at the small-

The total number of diagramy, like in Fig. 2, is est term Of course, Eq(17) is not exact, but corrections to
- F(x) are small, e.g., (Ig)"! or A/E. Taking into account
Ng=n""“(n—1)!n!. (200 such corrections will help us sum up the original divergent

series. Nevertheless, in order to make sense of our perturba-
tive analysis of the onset of chaos in finite Fermi systems we
should find the physically motivated cutoff for timé diver-

gent sum. The natural cutoff féf,, which we see, is given

by the total number of particles that may enter the diagram of
the effective interactiom,, g~ T/A~\VEA. If Npa>x "t

the summation now goes above the smallest term of the se-
ries. The consequences of the decision to sum up the series
above the smallest term are crucial. In the standard scheme
the function F(x) is described by perturbation theory at
"Emallx and becomes completely nonperturbatiakhough it

still may be smooth and finifeat x~ 1. Within the new sce-
nario F(x) blows up at

Heren! is the number of permutations of £n’ final par-
ticles, (h—1)! is the number of replacements @fcreened
Coulomb interaction lines, and""? is the number of I
—1)-segment trees connectingpoints 1—n [21]. Equation
(20) gives us the number of diagrams of the Sclimger
perturbation theory. Among thid, trees there are many dia-
grams having the same sg@fp to permutationsof matrix
elements of the two-particle interactidfy and different en-
ergy denominators. As it was pointed out in Rdf4], these
diagrams could not be considered as statistically indepe
dent, which results in lowering of the mixing by the high-
order effective interaction. The averaged modulus of the ef
fective matrix element found for the single Feynman
diagram(16) should be modified in the case of many inter- Fr X"max~ (NN gE/gA )" max~1 (23
fering diagrams. However, due to a huge range of variation max

of the Vet in the power law distributior(14), the average hich gives the chaotization threshafgh A (g/In g)?3. This
value is saturated by a rare very large fluctuation of the magstimate was done for the most strongly divergent series al-
trix element. Therefore, fan not too large the generalization |owed by Eq.(21). For example, ifF,~(n/2)! the same

of Eq. (16) for the many-diagram case is achieved by theca|culation will lead taS,~ A(g/In g)*5. Therefore, the more

simple multiplication by the number of diagraniwe will  accyrate conclusion from ER1) is that due to the effective

return later to the discussion of very largg. Finally, com- interaction including all~T/A excited particles, the series

bining Egs.(8), (16), and(20), we find for the IPR (7) blows up at some d/Ing)?3<&.<g/ing
Fo<n. ey 28

Two important peculiarities of the emergence of quantum
chaos follow from this “factorial” scenario.
(i) The direct interaction connects only the states close in
e Fock spacg20]. Therefore, Eq(7) describes mixing of
only a small part of close levels. On the other hand, the
_highest-order effective interaction entering E83) mixes
the huge numbefthe majority of all many-particle excita-
tions) of very distant simple states. Thus divergencé- (X)
due ton! leads to the transition from the Poisson to the rigid

We see that the series in Eql7) most likely is the
asymptotic series. Due to the unsatisfactory estimate of then
number of diagrams and even the value of the individuaF
diagram, we were able to draw only the upper bound=pr
However, it seems very unlikely that the cancellation be
tween the diagrams of the Schlinger perturbation theory
will remove the factorial divergence of the coefficients of the
series. In the following(unless explicitly indicated other- X
wise) we suppose that,~n!. The asymptotic series, com- (ng_ner—Dyson spectrum at'= 50.'

mon in field theory and high energy physics, usually do not_ (i) Due to the large power ofin Eq. (23), the growth of
cause serious trouble$or a review see Ref[22]). In all _F(x) with the increase of energy takes place at a very narrow
known cases one simply breaks the summation on the smaff?térval A&/&~ 1y, This means that the change of sta-
est term of the series and uses this smallest term also as tfgticS has a form of phase transition with relative width
order of magnitude estimate of the rest of the nonperturba=" Unmax: . . i
tive part of the sum. The more refined strategy will be to . OUr description of the development of chaos is suffi-
perform the Borel summation, but this procediue to the ~ Ciently based on the estimate of,a, [Eq. (23)]. If one is
same nonperturbative correctiors equivalent to the break- able to f||_1d another reason for breaking the series at a term
ing of the series at the smallest term. In our example thi®arametrically smaller thany,,,~T/A the result for&; also
means that one should break the summation in (@) at will be different. For example, the new cutoff may arise due

no~gA/In g€ and the nonperturbative ambiguity fhshould {0 @ huge number of interfering diagrani0). The joint

be probability distribution for the sum of many diagrams with
power-law individual distributions described by E@4) has
g A a Lorentzian forn{24] with the width y having the form
5an~e”0~exp[ —O'F E], (22
? Y x(V) ANg 0™
with someo~ 1. However, in the known field-theoretic ex- P(V) V2442 x(y)' Y X(y)gnfl g" (24

amples there exist clear physical mechanigimstanton and
renormalon that allow us to understand the origin of non- Here we have used for the estimate of the number of inde-
perturbative corrections and the necessity of breaking thpendent diagrams the upper bout@®). This distribution is
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valid for |V|<A/g. The functiony was defined in Eq(14).  of below golden rule decay provides us with a useful tool for
The factory(V)/x(7y) allows us to preserve the asymptotics the investigation of the onset of chaos in complex many-
(14) at |V|>y. Due to the logarithmic character gf this particle excitations also.
factor correctly accounts for the deviation from the pure Technically, our consideration is based on the two simple
power law in the distribution of single matrix elements. We equations(5) and (7) for the IPR. The two noninteracting
see that after taking into account the interference of differenstates are strongly mixed by the interaction if the correspond-
diagrams, the power-law distribution of the total matrix ele-ing energy difference turns out to be of the same order of
ment becomes strongly violated &V|~vy, not at |V| magnitude as the matrix element. As a result, all the effects
~Ag™"*! as in Eq.(14). The value ofF, found with the  that we consider are determined by the product of the aver-
distribution P(V) [Eq. (24)] becomes parametrically differ- aged modulus of the matrix element and the density of ac-
ent from the estimaté1) only atn, ..~g® [even atn/ .,  cessible states.
~(g/Ing)*? if one considers seriously the high powers of The emergence of chaos in the majority of complicated
logarithms in Eq.(24)]. However, this new variant of the states with many excited particles and holes was the main
cutoff leads to the same threshold for the onset of chaos agubject of this paper. This increase of chaos with the growth
we have found before in Eq23). This coincidence of the of excitation energy proceeds in a very complicated way,
results of two different approaches to the estimatiom,gf,  both technically and especially logically. In the simplest
may be considered as indirect support for the transition toariant, mixing of the simple(single Slater determinant
Wigner-Dyson statistics &~ A(g/In g)?°. states is caused by the direct interaction. The mixing by di-
At least some of the thresholds shown in Fig. 1 may lierect interaction starts aﬁ>Agz’3 [25]. Due to the large num-
above&, . The physical meaning of these perturbative threshber of excited particles, the interaction may proceed through
olds becomes less clear. Nevertheless, even alpvene  a large number of independent channels. This results in the
may try to look for effects generated by the direct or low- exponentiation of the IPR, as we have shown at the end of
order effective interaction. The highest-order effective inter-Sec. Il. Thus, even the direct interaction may mix together an
action becomes important due to the huge combinatoricexponentially large number of Slater determinant configura-
(20), but the corresponding matrix element is in general verytions. However, this number is still small compared to the
small (up to V~A/g"a9). Thus this high-order interaction total number of levels of the complicated system and the
may be invisible(or at least suppressedt small times in  direct interaction could not cause the transition from Poisson
time-dependent problems. For example, one may considdé® Wigner-Dyson statistics of energy levels.

the time evolution of the wave packdt(t), starting att An alternative to the direct interaction is the transition via
=0 from a single Slater determinant. The pure direct inter£ffective three-particle, four-particle, etc., interactions con-
action in this case gives sidered in Sec. lll. The effect of this high-order interaction is

much weaker than that of the direct interaction at low ener-
KT O)|¥(t)P=eTt, T=26Ag X&A)¥2 (25 dies, but they became comparablecatAg/Ing. Above the

energy £~ Ag/Ing our perturbative approach is no longer
The formal power countinglike we have done below Eq. Valid and we were forced to introduce the unknown scaling
(17)] gives for the range of validity of this resuktg?3<¢  function F(Ing&/gA) into the exponent describing the IPR
<Ag/Ing. However, due to the logarithmic behavior of all in Eq. (17). However, if one expects that(x~1)~1, the
integrals[see, e.g., Eq(11)] all values of the high-order logarithm of the number of components in the typical wave
effective matrix elements are equally important within function até~Ag/Ing will be Ing>1 times smaller than the
g "*1<|V|/A<g ! [Eq. (14)]. Therefore, the range of va- logarithm of the total number of states. This means that even
lidity of Eq. (25) may change greatly after taking into ac- though the mechanism of mixing changes and the number of

count the contribution from large high-order effective matrix components in the wave function increases much faster at
elements. E~Ag/Ing, this threshold does not correspond to the

Poisson-Wigner-Dyson transition.

The Wigner-Dyson statistics become evident only&at
~Ag. This energy is analogous to the golden rule threshold

The goal of this paper was to consider how the chaotice~AgY? for the decay of a single quasiparticle. Roughly
mixing of noninteracting eigenstates develops with increasspeaking, above thé~Ag any particle from the strip~T
ing the excitation energy in finite weakly interacting Fermi aroundsr may decay via the golden rule.
systems. Measured in units of the single-particle level spac- Formally, in order to understand how the change of sta-
ing A the energy corresponding to the onset of rigid spectistics proceeds betweefr~Ag/Ing and£~Ag one should
trum may depend on only one parametdiEq. (1)]. Never-  analyze the high-order behavior of the coefficieftsin the
theless, even with only one parameter we were able texpansion of the functioR(x) [Eq. (17)]. Surprisingly, this
introduce a number of different energy scales, shown in Figanalysis in Sec. IV instead of such an understanding led us to
1, which correspond téor may correspond jahe different  the crucial revision of the straightforward scheme considered
stages of development of chaos. above.

The low lying thresholds in the figure/A~(g/Ing)*? As we have shown in Sec. IV, the series in [EL7) most
ande/A~g'? are associated with the decay of a single qualikely is the asymptotic series. Althoudh,~n! [Eq.(21)] is
siparticle. These thresholds were considered in R&6-14  only the upper bound fdf,,, it seems very unlikely that the
and their description was not the aim of this paper. Howeverfactorial divergence of the coefficients will be eliminated.
the methods introduced in Ref4.2,14 for the investigation Moreover, even ifF,~(vn)! with any 0<v<1, the results

V. DISCUSSION
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of Sec. IV will be only slightly modified. The factorial di- perturbed. Between-Ag?® and ~Ag/Ing a direct interac-
vergence of the series would not be dangerous if one sums o mixes together the exponentially large number of simple
up, e.g., via some variant of the Borel method. Howevergtates(7). However, the IPR is under theoretical control in
within the Borel prescription one is immediately faced with this region and the statistics is clearly Poissonian. Above
the problem of strange nonperturbative corrections like iy g/n g the statistics of the energy levels is still Poissonian,
Eq. (22 (moreover, that thé&, are positive by construction pt the IPR is described by sorfienknown scaling function
and the series is non-Borel summablBeing unable to find F(x) [Eq. (17)]. The transition to the Wigner-Dyson spec-
the physical motivation for the Borel summation, we werey m takes place somewhere betwegrAg/ing and €
looking for another way to make sense of the divergent Sez_Ag [see Eq(19)]. The transition may be relatively narrow
ries. The coefficientF, is given by the sum of AEIE~(Ing)~™

(n+1)st-order tree-type Feynman diagrams. Therefore, the (jj) |n the second variant the cutoff of the series in Eq.
naturgl cutoff for the series is given by th_e order of the Iarg-(17) is determined by the number of particles in the largest
est diagram that may be constructed with availablé/A  5jj0wed Feynman diagram and is independent of the scaling
particles, namelynpa~T/A (one more way to determine yariaplex. In this case the transition to the Wigner-Dyson
Nmaxconsidered in Sec. IV leads to the same physical rbs“”spectrum takes place &t~ A(g/Ing)?® and is narrow like
Within this scenario then,,,, and the scaling parameter AEIE~AIT~(Inglg)¥2.

=Ing&/gA in Eq. (17) are two independent variables. At To our current understanding, the second scenario is more
> 1Inmax the summation in Eq17) goes above the smallest physically motivated. However, our argumentation in this
term. However, up to the energy~A(g/Ing)*® all Npax  part is not completely rigorous and one still may find reasons
terms of the series are small. && & even the broken series for symmation of the tree diagrams in the manner of Borel.
blows up and abovef; our perturbative approach is no The important disadvantager perhaps advantapef the
longer valid. Because the growth B{x) at£~¢&; proceeds  second scheme is that if it is correct, it will be probably an
mostly due to the last terms of the series or the most comexample of the phase transition caused by the factorial diver-
plicated diagrams of the highest allowed order of perturbagence of the series. Finally, although both of our scenarios
tion theory, this threshold corresponds to the narrow phasgake physical predictions, we were able to make only the
transition from the Poisson to the Wigner-Dyson spectrumorder of magnitude estimates of the considered thresholds.
We attempted at the end of Sec. IV to find remnants oftherefore, any experimental confirmatigwithin the true
nonchaotic behavior abow& by considering the short time  experiment or by numerical simulationsf the mechanisms
processes. However, this issue requires a separate and mejethe development of chaos considered in this paper is very

careful investigation. desirable.
To summarize, we have considered in this paper the two
scenarios how quantum chaos may develop in the finite ACKNOWLEDGMENTS

Fermi systems depending on the way one uses the summa-

tion of factorially divergent contributions from the high-  The author is thankful for discussions with V.F. Dmitriev,

order effective interaction. V.V. Flambaum, A.A. Gribakina, G.F. Gribakin, I.V. Pono-
(i) If the series is summed up within the Borel prescrip-marev, D.V. Savin, V.V. Sokolov, O.P. Sushkov, V.B. Tel-

tion (i.e., broken effectively at the smallest térme are able itsin, and A.S. Yelkhovsky. The work has been supported in

to find a few distinct stages of chaotic behavior. Below thepart by the Gordon Godfry Foundation and by RFBR under

energy~Ag?® the majority of eigenvectors are almost un- Grant No. 98-02-17905.

[1] E. P. Wigner, Ann. Math62, 548(1955; 65, 203 (1957. Hong, V. Boegli, D. Kern, and M. deFranza, Europhys. Lett.
[2] J. B. French and S. S. M. Wong, Phys. L&8B, 447 (1970); 25, 605(1994.

35B, 5 (197)). [10] U. Sivan, Y. Imry, and A. G. Aronov, Europhys. Lef8, 115
[3] O. Bohigas and J. Flores, Phys. Le&34B, 261 (1971); 35B, (1994.

[11] Ya. M. Blanter, Phys. Rev. B4, 12 807(1996.

B. L. Altshuler, Y. Gefen, A. Kamenev, and L. S. Levitov,
Phys. Rev. Lett78, 2803(1997.

[13] A. D. Mirlin and Y. V. Fyodorov, Phys. Rev. 56, 13 393

383(197). 17
[4] M. Horoi, V. Zelevinsky, and B. A. Brown, Phys. Rev. Lett. [12]
74, 5194(1999; V. Zelevinsky, B. A. Brown, N. Frazier, and

M. Horoi, Phys. Rep276, 85 (1996. (1997.
[5] V. V. Flambaum, G. F. Gribakin, and F. M. Izrailev, Phys. [14] P. G. Silvestrov, Phys. Rev. Left9, 3994(1997.

Rev. E53, 5729(1996. [15] We suppose that the Fermi energy is large compared to the
[6] D. Weinmann, J.-L. Pichard, and Y. Imry, J. PhySrancg | excitation energye>£. The number of particles goes to in-

7, 1559(1997. finity, but experimental accuracy still allows us to resolve in-
[7] Ph. Jacqgoud and D. L. Shepelyansky, cond-mat/9706040; B.  dividual energy level¢the mesoscopic limit

Georgeot and D. L. Shepelyansky, cond-mat/9707231. [16] A. Bohr and B. R. MottelsonNuclear Structure(Benjamin,
[8] T. Guhr, A. Muler-Groeling, and H. A. Weidenriler, Phys. New York, 1969, Vol. 1, p. 284.

Rep.299 189(1998. [17] The temperature and total energy may be easily related via

[9] U. Sivan, F. P. Milliken, K. Milkove, S. Rihston, Y. Lee, J. M. =[(e—eg)n(e)de/A.



5636 P. G. SILVESTROV PRE 58

[18] I. V. Ponomarev and P. G. Silvestrov, Phys. Revo® 3742  [23] Only if the factorial divergence of, is washed out com-

(1997. pletely due to the large number of coinciding diagrams in Eq.

[19] V. V. Flambaum and F. M. Izrailev, Phys. Rev. 36, 5144 (20) (which seems very unlikelywill £, be raised again to that
(1999. predicted by Eq(19).

[20] We use the concept of the distance in the Fock space introf24] See, for example, P. A. Mello, iMesoscopic Quantum Phys-
duced in Ref[12]. The distance between two simple states ics, 1994 Les Houches Lectures, Session l(Klsevier, Am-
equals one if they are related by the direct interaction in the sterdam, 1995 Appendix B.
first order of perturbation theory. [25] In particular this means that the decay of single quasipatrticles

[21] This combinatorial calculation was done by Cayley more than starts at parametrically lower energies than the mixing of com-
a century ago. The author is thankful to A. Gribakina and G. plicated many-particle excitation\*><Ag®%). Thus, be-
Gribakin for a discussion of this result. low the energye~Ag?® one may consider the decay of the

[22] Large Order Behavior of Perturbation Thegrgdited by L. C. guasiparticle(via the golden rule or otherwisento almost
Le Guillou and J. Zinn-JustifNorth-Holland, Amsterdam, nonperturbed few particle states as it was done in Réf-

1990. 14].



